Chapter 3
Section 3.1

Recap and Then Some

In Section 2.5 we discussed inverses of functions. In particular, we determined that a function is
invertible if and only if it is one-to-one.

Strategy: Let f be a one-to-one (invertible) function. Suppose that (zy, f{x1)) and (z9, f (ry}) are
two ordered pairs in f. If we suppose that f{z1) = f(z,) then what must the relationship between

x1 and z3 be? Tt ‘{Iﬁx.\)w_{-‘ (‘m\ theon X=X

Exercise: Show that j(z) = £t is invertible and find j~*(z).
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Example: Consider the q‘}adratz(‘ function g(z) = 2? —6x+13 and the function § (z) = +/z —4+3.
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a) Determine the domain of g and £
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b) By completing thc squaro wrltc g as a member of the tramformatlon family of x?
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¢} Show that g is not mvert;ble {one-tg-one).
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d) Show that f ( ) is mveltlble a.nd find its mversc
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e) What is the domain of f 17
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Question: How is it possible that é@s not_invertible, but f is?
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Further Question: If we restrict the domain of g to/a subset of its forme1 self, then we can make

g a one-to-one function on the new domain. thxt should this new dc;/{nam be?
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A quadratic function is a function defined by a guadratic equation. Another way of classifying
quadratic functions is as the set of functions in the transformation family of y = x? which are not
constant functions (i.e. the set of functions of the form f(z) = a{z — h)? + k with o, h and k real
numbers with o # 0 or {f(z} : f{z) = a(z — h)* + k and a,h,k € R and a # 0}).

Exercise: By completing the square, write f(z) = 2% +6 as a member of the transformation family
of y = z* and graph f(z).
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Graphs of Quadratic Functions

If we consider a quadratic function of the form f{z) = a(x — h)? + k then we can classify how the
graph of f{z) looks just be consider the constauts a,h and k. For instance, if a > 0 then f{z)
opens upward; but if a < 0 then the graph opens downward. Remember also that A determines
the amount of horizontal translation and &k determines the amount of vertical translation. Because
of this, we say that {h, k} is the vertex of f{x) and that f{z) = a(x — h)? + k is the vertex form
of f. We can also determine that f has an axis of symmetry on the line z = k. Exercise: Find

the vertex of the following quadratic functions.

= -2r? —dp 43, ) ;
m -2xeVtS (49
glz} =2z — 4o +9 o
§00= 2000+ 47 (1,7)
Definition: The minimum value of a function f is the least value y = f(2) for x € domf. The
maximum value of the function f is the greatest value y = f(z) for z € domf.

The domain of every quadratic function is all real numbers, {—o00,oc). The range is determined
by the second coordinate of the vertex. If f opens upward then its range is [k, o0} and k is the
minimum value of f. If f opens downward then its range is {—o0, k] and k is the maximum value
of f.

Question: What is the domam and range of f and g mﬁhe exercise ahgve?
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Quadratic Inequalities

When solving quadratic inequalities there are two different methods you can use. You can either
graph it {which we have seen before) or you can use the test-point method. Exercise: Use the

graphical method for solving quadratic inequalities to solve the following inequalities.

a) z¢ -~z > 6. («-f&?j}
b) (xz+3)?+2<6. (%g ""0

Exercise: Use the test-point method fo solve the following quadratic inequalities.

a) 22% — 4z — 9 < 0. ({h%d;g%j ?‘F-%JE'EE
b) w? —dw—-12>0. . ‘
B
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Applications of Maximum and Minimum

Exercise: A ball is tossed straight upward with an initial velocity of 80 feet per second from a
rooftop that is 12 feet above ground level. The height of the ball in feet at time t in seconds is
given by h(t) = ~16£2 + 80t + 12, Find the maximum height above ground level for the ball.

Exercise: I 100 m of fencing will be used to fence a rectangular region, then what dimensions for
the rectangle will maximize the area of the region?
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Exercise: If 100 m of fencing will be used to fence three sides of a, rectangular region (because one

side of the region is enclosed by the side of a house) then what dimensions for the rectangle will
maximize the area of the region?
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\Vertex = (26,250) . Hren s maximazred ot 1260 17
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